فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    57
  • شماره: 

    2
  • صفحات: 

    355-368
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    10
  • دانلود: 

    0
چکیده: 

Kidney stones are solid crystals made of minerals and salts that form within the kidney, often creating a sharp, hard mass. These stones can block urine flow as they move into the urinary tract, making early detection crucial. Although deep neural networks (DNNs) have been used to diagnose kidney stones with some success, they still face performance and standardization issues. A new approach combines Graph Convolutional networks (GCNs) with DNNs to address these challenges. This method extracts orb features from images, converts them into Graphs, and embeds nodes using a Graph Convolutional network, which includes a message-passing Layer and node feature aggregation. The GCN updates node properties, enhancing efficiency and performance when integrated into a deep network. This approach enables more comprehensive and precise feature extraction from images, improving kidney stone diagnosis. The study highlights GCNs' potential in analyzing medical images for diagnosing kidney stones. The proposed architecture was tested using publicly available CT scan images and demonstrated outstanding accuracy, correctly identifying kidney stones or healthy conditions in 98.6% of cases. It outperformed other advanced techniques, especially in detecting stones of various sizes, including very small ones, proving its effectiveness in medical image analysis.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 10

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Bastami S. | Dowlatshahi M. B.

اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    14
  • شماره: 

    2
  • صفحات: 

    59-80
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    5
  • دانلود: 

    0
چکیده: 

This paper explores Graph embedding techniques for effectively analyzing large, heterogeneous Graphs with complex and noisy patterns. Graphs represent data through nodes (entities) and edges (relationships), and when dealing with large-scale data, effective search methods are crucial. Graph embedding helps evaluate node significance and transforms data into latent space representations. It also addresses challenges like handling multi-label data in heterogeneous networks, where nodes may have multiple labels describing complex concepts. Traditional methods struggle with such multi-label scenarios and fail to capture label dependencies. The paper introduces a Graph Neural Network (GCN)-based node embedding method, which extends traditional neural networks to Graph data. GCNs allow the extraction of local features from nodes and their neighbors, making them useful for heterogeneous networks. By integrating label information into the embedding process, the method improves relationships between labels. The proposed approach transforms neighboring labels into continuous vectors, structured into a matrix for learning. This enhances the overall network embedding. The method outperforms previous techniques, demonstrating improved performance on real-world datasets, such as a 2.4% improvement on the IMDB dataset and 9.3% on the DBLP dataset. The paper discusses Graph embedding techniques in the first section and explores the potential of multi-label embedding in non-uniform Graphs, suggesting future research directions in the final section. The article's code link on GitHub can also be found at the following: https://github.com/frshkara/EGSA.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 5

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    10
تعامل: 
  • بازدید: 

    35
  • دانلود: 

    0
چکیده: 

Graph representation learning aims to extract embedding vectors for Graph nodes, such that similar nodes have close vectors in the embedding space. Existing methods often measure node similarity based on their common neighbors, which may overlook nodes with similar structures in different parts of the Graph. We want to capture the structural similarity of nodes that are not adjacent in the Graph. To this end, we propose struc2vec+k, a new method that extends the basic struc2vec method. The basic method considers two nodes to be structurally similar if their nodes in the first, second, third, and subsequent Layers are similar. The proposed method also takes into account the connection between Layers, and aggregates the information of two consecutive Layers. For instance, for the second Layer, the information of the first-and second-Layer nodes are aggregated. This aggregation is based on the inter-Layer connections. The aggregation can be done up to the k-th Layer, which explains the name of the method. We show that the proposed method achieves good accuracy in numerical experiments.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 35

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Nemati S.

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    57-68
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    18
  • دانلود: 

    0
چکیده: 

Background and Objectives: Twitter is a microblogging platform for expressing assessments, opinions, and sentiments on different topics and events. While there have been several studies around sentiment analysis of tweets and their popularity in the form of the number of retweets, predicting the sentiment of first-order replies remained a neglected challenge. Predicting the sentiment of tweet replies is helpful for both users and enterprises. In this study, we define a novel problem; given just a tweet's text, the goal is to predict the overall sentiment polarity of its upcoming replies.Methods: To address this problem, we proposed a Graph Convolutional neural network model that exploits the text's dependencies. The proposed model contains two parallel branches. The first branch extracts the contextual representation of the input tweets. The second branch extracts the structural and semantic information from tweets. Specifically, a Bi-LSTM network and a self-attention Layer are used in the first Layer for extracting syntactical relations, and an affective knowledge-enhanced dependency tree is used in the second branch for extracting semantic relations. Moreover, a Graph Convolutional network is used on the top of these branches to learn the joint feature representation. Finally, a retrieval-based attention mechanism is used on the output of the Graph Convolutional network for learning essential features from the final affective picture of tweets.Results: In the experiments, we only used the original tweets of the RETWEET dataset for training the models and ignored the replies of the tweets in the training process. The results on three versions of the RETWEET dataset showed that the proposed model outperforms the LSTM-based models and similar state-of-the-art Graph Convolutional network models. Conclusion: The proposed model showed promising results in confirming that by using only the content of a tweet, we can predict the overall sentiment of its replies. Moreover, the results showed that the proposed model achieves similar or comparable results with simpler deep models when trained on a public tweet dataset such as ACL 2014 dataset while outperforming both simple deep models and state-of-the-art Graph Convolutional deep models when trained on the RETWEET dataset. This shows the proposed model's effectiveness in extracting structural and semantic relations in the tweets.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 18

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

عامری علی

اطلاعات دوره: 
  • سال: 

    1399
  • دوره: 

    78
  • شماره: 

    4
  • صفحات: 

    207-211
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1021
  • دانلود: 

    334
چکیده: 

زمینه و هدف: شایعترین انواع سرطان پوست غیرملانومی، سرطان های سلول پایه ای (Basal cell carcinoma, BCC) و سلول اسکواموس (Squamous cell carcinoma, SCC) می باشند. Actinic keratoses (Solar keratoses) و Intraepithelial carcinoma (Bowen’ s disease) که به طور مخفف از آن ها با نام AKIEC یاد می کنیم، پیش زمینه های SCC هستند. از آن جا که تشخیص زودهنگام، تاثیر بسزایی در درمان سرطان دارد، این مطالعه یک مدل مبتنی بر کامپیوتر برای تشخیص این سرطان معرفی می کند. روش بررسی: در این مطالعه تحلیلی که در بهمن 1398 در دانشگاه علوم پزشکی شهید بهشتی انجام شد، از مجموعه تصاویر درماسکوپی Human against machine with 10000 training images (HAM10000)، تعداد 327 تصویر AKIEC، 513 تصویر BCC و 840 تصویر کراتوسیس خوش خیم (Benign keratosis, BK) استخراج گردید. از هر کدام از این سه نوع داده، 90% تصاویر بطور تصادفی به عنوان داده آموزشی انتخاب و مابقی به عنوان داده تست لحاظ شدند. از یک مدل یادگیری عمیق شبکه عصبی کانولوشنال (Deep learning Convolutional neural network)، با استفاده از شبکه AlexNet (Krizhevsky, et al., 2012) به عنوان شبکه از پیش آموزش (Pretrained) داده شده برای تشخیص سرطان استفاده شد. پس از آموزش شبکه بر روی داده آموزشی، عملکرد آن بر روی داده تست، ارزیابی گردید. یافته ها: مدل یادگیری عمیق پیشنهادی به دقت 90%(Accuracy) در طبقه بندی (Classification) تصاویر به دو کلاس خوش خیم و بدخیم دست یافت. همچنین مساحت زیر منحنی Receiver operating characteristic (ROC) 0. 97، حساسیت 94% (Sensitivity) و اختصاصیت 86% (specificity) به دست آمد. نتیجه گیری: این یافته ها نشان می دهد که مدل های یادگیری عمیق می توانند به دقت بالایی در تشخیص سرطان غیرملانومی پوست دست یابند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1021

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 334 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 5
نویسندگان: 

Merrikhi Haniye | Ebrahimnezhad Hossein

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    20
  • شماره: 

    4
  • صفحات: 

    134-146
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    11
  • دانلود: 

    0
چکیده: 

Robots have become integral to modern society, taking over both complex and routine human tasks. Recent advancements in depth camera technology have propelled computer vision-based robotics into a prominent field of research. Many robotic tasks—such as picking up, carrying, and utilizing tools or objects—begin with an initial grasping step. Vision-based grasping requires the precise identification of grasp locations on objects, making the segmentation of objects into meaningful components a crucial stage in robotic grasping. In this paper, we present a system designed to detect the graspable parts of objects for a specific task. Recognizing that everyday household items are typically grasped at certain sections for carrying, we created a database of these objects and their corresponding graspable parts. Building on the success of the Dynamic Graph CNN (DGCNN) network in segmenting object components, we enhanced this network to detect the graspable areas of objects. The enhanced network was trained on the compiled database, and the visual results, along with the obtained Intersection over Union (IoU) metrics, demonstrate its success in detecting graspable regions. It achieved a grand mean IoU (gmIoU) of 92.57% across all classes, outperforming established networks such as PointNet++ in part segmentation for this dataset. Furthermore, statistical analysis using analysis of variance (ANOVA) and T-test validates the superiority of our method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 11

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

نشریه: 

EBIOMEDICINE

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    78
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    7
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    9
تعامل: 
  • بازدید: 

    80
  • دانلود: 

    0
چکیده: 

Spatiotemporal signal processing is one of the complex and hot topics, especially in web mining like web traffic analysis. The web pages and their links are a Graph, and their content (e. g., visits) can be a signal. The PyTorch Geometric Temporal is introduced for spatiotemporal signal mining. This study analyzes Wikipedia mathematics pages using the PyTorch Geometric Temporal library to improve their visit prediction during the time using a grid search for hyper-parameter adjustment and analyzing the effect of each parameter. The results show more than 8. 03% relative improvement for the GConvGRU algorithm versus basic related work in state-of-the-art based on about 129, 000 experiments. Besides, it should be considered that lags and node feature parameters must be the same, and lower learning rate and epochs, and higher training ratio and filter size are the best possible values.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 80

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Pourmoradi Nazanin | Ameli Mohammad Taghi

اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    4
  • شماره: 

    1
  • صفحات: 

    509-516
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    0
  • دانلود: 

    0
چکیده: 

Event-based load shedding (ELS) is a vital emergency countermeasure against transient voltage instability in power systems. Deep learning(DL)--based ELS has recently achieved promising results. However, in power systems, faults may occur that are not in the training database, reducing the model's effective performance. In this situation, it is necessary to update the model. On the other hand, updating the model for new faults requires a large database. To address the problem of unknown faults, this paper proposes a transfer learning-based Graph Convolutional network (GCN) model that allows updating the model with a small database. In the first step, an ELS model is trained with a large database. Then, if a new fault occurs, the model is transferred to the new fault and updated using transfer learning and with a small database. To evaluate the performance of the proposed model, it was implemented and tested on the IEEE 39 bus system. The results show that the proposed model has high-performance accuracy and can be updated with a small database when encountering an unknown fault. According to the results, the proposed model has reduced the database size by 78.91% for optimal updating.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 0

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

فیاضی حسین | شکفته یاسر

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    25
  • صفحات: 

    93-125
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    19
  • دانلود: 

    0
چکیده: 

In traditional speech processing, feature extraction and classification were conducted as separate steps. The advent of deep neural networks has enabled methods that simultaneously model the relationship between acoustic and phonetic characteristics of speech while classifying it directly from the raw waveform. The first Convolutional Layer in these networks acts as a filter bank. To enhance interpretability and reduce the number of parameters, researchers have explored the use of parametric filters, with the SincNet architecture being a notable advancement. In SincNet's initial Convolutional Layer, rectangular bandpass filters are learned instead of fully trainable filters. This approach allows for modeling with fewer parameters, thereby improving the network's convergence speed and accuracy. Analyzing the learned filter bank also provides valuable insights into the model's performance. The reduction in parameters, along with increased accuracy and interpretability, has led to the adoption of various parametric filters and deep architectures across diverse speech processing applications. This paper introduces different types of parametric filters and discusses their integration into various deep architectures. Additionally, it examines the specific applications in speech processing where these filters have proven effective.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button